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On a Condition for a Graph to be a Tree
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ABSTRACT. In this paper we show that if a group G acts on the graph X
under certain generators and relations of G, then X is a tree.

1. Introduction
The presentation of groups acting on trees known as Bass-Serre theorem has been
given iJl], corollary 5.2.

The aim of this paper is to prove the converse of Bass-Serre theorem in the sense
that if G is a group acting on a graph X and G has the presentation of corollary 5.2
oft], then X is a tree.

We begin by giving some definitions. Bya graph X we understand a pair of disjoint
sets V( X ) and E( X ), with V( X ) non-empty, together with a mapping E( X ) ~
V( X)x V( X ),y~ ( o( y ), t( y », andamappingE( X )~E( X ),y~ ysatisfy-
ing y = y and o( y ) = t( y ), for all ye E( X). The case y = y is possible for some ye

E(X).
A path in a graph Xis defined to be either a single vertex veV( X) (a trivial path),

or a finite sequence of edges Yl ' yz ' ..., Yn' n ~ 1 such that t( Yi ) = 0 ( Yi + 1 ) for i

=1,2,...,n-l.
ApathYl ,Yz, ;.. Yn is reduced ifYi + 1 ¥ Yi' fori = 1,2, ...,n-l, A gt\ph Xis con-

nected, if for every pair of vertices u and v of V( X ) there is a path Yl ' Yz ' ..., Y nin
X such that o( Yl ) = u and t( Yn) = v.

A graph X is called a tree if for every pair of vertices of V( X) there is a unique re-
duced path in X joining them. A subgraph Yof a graph X consists of sets V( Y) ~
V( X) and E( Y ) ~ E( X) such that if ye E( Y), then ye E( Y), o( Y ) and t( Y )
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are in V( Y). We write Y k X. We take any vertex to be a subtree without edges. A
maximal connected subgraph is called a component. It is clear that a graph is con-
nected if and only if it has only one component.

If Xl and X2 are two graphs then the map /: Xl ~ X2 is called a morphism if/takes
vertices to vertices and edges to edges such that

f(y) = trY)

f( o( y» = o( f( y »

and f(t(y» = t(f(y», fotallYEE(X1);

f is called an isomorphism if it is one-to-one and onto, and is called an automorph-
ism if it is an isomorphism and XI = X2 .The automorphisms of X form a group under
composition of maps, denoted by Aux ( X).

We say that a group G acts on a graph X if there is a group homomorphism <I> : G ~
Aut (X).lfxEXis a vertex or an edge, wewriteg(x) for <I>(g) (x).IfYEE(X), then
g( y) = g(Y), g( o(y» = o(g(y », andg( t(y» = t(g(y». The caseg(y) = y for
some YE E( X) and gE G may occur. If YE X, (vertex or edge), we define G( y ) = {g( y )
I gE G} and this set is called an orbit. If x, YE X, (vertices or edges) we define G( x,y )
= {gE G I g( y ) = x}, and Gx=G( x, x ), called the stabilizer ofx. For YE E( X), it
is clear that Gy is a subgroup of Gu' where UE {o( y ), t( y )} Also if Yis a subset of
X then we define G(Y) to be the set G( Y) = {g( y ) I gE G, YE Y}.

It is clear that if XE V( X) and YE E( X), then G( X,Y ) = <1>.

For more details about groups acting on graphs we refer the reader to[1.20r 3 I.

2. Preliminary Definitions and Notation

Throughout this paper G will be a group acting on the graph X, T a subtree of X
such that T contains exactly one vertex from each G-vertex orbit, and Ya subtree of
X such that Y contains T, and each edge of Y has at least one end in T, and Y contains
exactly one edge y(say) from each G-edge orbit such that G( y, y ) = <p, and exactly
one pair y. and y from each G-edge orbit such that G( y, Y ) ~ <p.

Properties of T and Y

(1) G( Y) = X.

(2) G( V( T» = V( X).

(3) Ifu, ve V( T) such that G( u, v) ~ <p, then u= v.

(4) G()1, y) = <p, for allye E( T).

(5) If Yl ' Y2 ' e E( Y) such that G( Yl ' Y2 ) ~ <p , then Yl = Y2 or Yl = )12
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Given this we can now introduce the following notation.

(1) For each VE V( X) let v* be the unique vertex of Tsuch G( v, v* ) # 4>. In par-
ticular v* = v if VE V( T) and in general ( v* )* = v*. Also if G( u, v) # 4>, then v* =
v* fo!. u, VE V( X). If VE V( T), let < Gy I reI Gy > stand for any presentation of Gy,
and G y be the set of generating symbols of this presentation.

(2) For each edge y of E( Y) we have the following

(a) Define [y ] to be an element of G( t( Y ), t( Y )*), that is, [y] ( t( y )*) =

t( y ), to be chosen as follows.
If o( Y ) E V( T) then ( i)[ y] = lif YE E( T), (ii) [y] (y ) = y if G( y, y) # 4>.
If o( Y ) t V( T) then [ y ] = [y] -1 if G( y, y ) = ~, otherwise [ y] = [y].

If is clear that [y] [y] = 1 if G( y, y) = <p, otherwise [y ] [y] = [y f.

r] -I (y) if o( y) E V( T), otherwise let -y = y. Now define + y(b) Let -Y = L Y

=[y](-y).
It is clear that t( -y ) = t ( y ) *, o( + y ) = o( y I * and ( + Y ) = -( y ).

(c) Let Sy be a word in Go(y)* of value [y] [y .It is clear that Sy == Sy .

(d) Let Eybe a set of generators ofG_yand Oy be a set of words in Gt(y)* mapping
onto Ey .

~ Define c!>y : G_y -+ G+ybyc!>y(g) = [y]g[y]-I,gEG:.- anddefine\jJy:Oy
-+ Gy by taking the word which represents the element g of Ey to the word which rep-
resents the element [y] g[y 1-1 .

(f) Let yGy y -1 = GJ stand for the set of relations ywy -1 = \jJy ( w), WE Oy .

(3) Let P( Y) stand for the set of generating symbols

(i) °v' for VE V( T)

(ii) y , forYE E( Y)

and R( Y) stand for the set of relations

( i) relGv' for VE V(T)
(ii) yG yY-l = GJ, forYE E( Y)

(iii). Y = 1, for YE E( T)

(iv) yy= Sy, forYEE( Y)
(v) y2 = Sy, for YE E( Y) such that G( y, y) ¥ C!>.

Note that if G( y, y) ¥ c!> thenyi E( T).

(4) Let 8( Y) be the set { G v' [y] : VE V( T) and YE E( Y) }.

2.1 Theorem (Bass-Serre Theorem)

(i) If X is connected, then 8( Y) generates G.
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(ii) If Xis a tree, then G has the presentation < P( Y) I R( Y) > via Gy-+ Gyand
y-+ [y], for all ve V( T) and allye E( Y).

Proof

See[3], Corollary 5.2.

3. The Converse of Bass-Serre Theorem

Let G, X, Yand Tbe as in section two. In this section we prove the converse of
Theorem 2.1 in the sense thatif8( Y) generates G, then Xis connected, and if G has
the presentation of Theorem 2.1- (ii), then Xis a tree.

3.1 Definition
For each VE V( Y) let Xv be an edge ofE( Y) such that O(Xv)E V(T) andt(Xv)

= v. Let ev = 0 if VE V( T), otherwise ev = 1.

Concerning the edge Xv we see that X" exists since Y is a subtree and Xv is unique
if vi V( T) and not necessarily unique if VE V( T).

The following proposition will be fundamental for the main theorem.

X
]eU [ X ]eV

U go v

3.2 Proposition
Any element 8 of G( u, v), where u, VE V( Y) can be written as 8 =

where 80 E G u. ..

= v and v* = u
,

](v*

Proof

Since ge G( u, v), therefore g( v) = u.

.We consider the following cases:

Case 1. u and v are inV( T).
In this case we have u* = v* = vsothat G( u, v) = Gy and, Xu a11dXu are inE( T)

Since [ Xu] = [Xu] = 1 and eu = ey = 0, therefore the proposition holds.

Case 2. ue V( T) and vt V( T).

In this case u* == v* = u [ X ] = 1 e = 0 and e = 1, u ' u ' y .

Now ge G( u, v ) ~ g( v) u

~ g[ Xy ] ( v* ) == v*, since [Xy

~ g[ Xy ]eGy.

~ g[Xy] = h, he Gy.

~ g = h[Xy]-l
~ g = [Xu ]eu h[ Xy ] -1

--1 = [Xy ] We take h = go
IfG(Xy, X"

= <1>, then [Xv]
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~1

[X
-zIf G I Xy' Xy) ;of <1>, then y J L' Xy] EGxy, Hence

k[ Xy ] , where kE GXY .We take go = hk.

Case 3. ut V( T) and .VE V( T).

In this case u* = v* = v, eu = 1, ey = 0 and [Xy] = 1.

Now gE G( u, v) =;> g( v) = u

=;> g( v ) = [Xu] ( u* )

=;> g( v ) = [Xu] (v), since u* = v

-1Xu] g( v ) = v

=;> [Xu] -1 gE Gy

-1

[Xu] g=go,forgoEGy
e -e=;> g = [Xu] ugo[Xy] y, since eu = 1, and [Xv

Case 4. u and v are not in V( T

This case is similar to cases 2 and 3 above,

This completes the proof.

Since Yis a sU.btree of X, therefore any edge y ofE( Y), O(Y)E V( T) can be writ-
ten as Y = Xy' where VE V( Y). Therefore by defining ey = ey -1, where v = o( Y ), for

all YE E( Y), the following can be easily proved:

(1) ey + eu = 0 if yt E( T), where u = t ( Y )
e + e I

(2) [y] u y = [y], where u = t(y ) and v = o( y )

(3) [y ]ey + eu = [y], where u = t( y )

(4) [Xu]eU = [y ]eu , where u = t( y )

-e e(5) [Xv.] y = [Y.. y , where v = o( y )

3.3 Proposition
LetYI andyz be two edgesofE( Y), Uj = t( y) andvj = o( yj )fori = 1, 2 such that

G( Ul ' Vz ) ;of <1>. Then any element ge G( u1 ' Vz ) can be written as

g = [Yl ]eUI go[ yz ]eyz , where go E Gu~ .

Proof
The proof easily follows from proposition 3.2 and (5) above.

3.4 Lemma

If G is generated by the set8( Y), then X is connected.

Proof
Let C be a component of X such that C contains Y. We need to show that X = C.

[Xv.]= r Xv 1 and [ =

=;:>[

=;>

) = 1,
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Since Y ~ C, we have G( Y) ~ G( C). By the definition of Ywe have G( Y) = X.
Therefore G( C ) = X. To show that C = X we need to show that G c = G, where G c
= {gE G I g( C) = C}which is a subgroup of G. Define.1.( Y) = {gE GI Yn g ( Y)
~ ct>}. Similarly.1.( C ) is defined. Therefore.1.( Y ) ~ .1.( C).

Now w~ show that.1.( Y) generates G, i.e. <.1.( Y) > = G. Since 8( Y) generates
G, therefore we need to show that the elements of.1.( Y) can be written as a product
of the elements of 8( Y ).

Now gE .1.( Y) =;> Y n g( Y) ~ ct>

=;> there exists u, VE V( Y) such that u = g( v ) .

=;> gE G( u, V)

=;> g = [ Xu ]eu go[ Xv ]ev ,where go E Gu* .(Proposition 3.2)

=;> < 8( Y) > = < .1.( Y) > = G

=;> <.1.( C ) > == G

Since <.1.( C) > = Gc' therefore Gc = G.

Therefore Gc( C) = G( C), which implies that C = X. Hence Xis connected.

This completes the proof.

To prove the main result of this paper we shall therefore a:ssume the following con-
dition on the elements of G.

Condition I
If go[ Yl ] gl [ Y2 ] g2 ...[ Yn ] gn' n:2: 1 is the. identity element of G,where

(1) Y.-E E( Y), for 1:5 i:5 n

(2) t( Yi )* = o( Yi + 1 )* , for 1 :5 i :5 n-1

(3) goE Go( y )*
1

(4) g.-E GI(Yi)* , for 1:5 i:5 n

then for some i, 1 :5 i:5 n
(a) Yi + 1 = )Ii and g.-E G -y..or
(b) Yi + 1 = Yi and g,-E Gy. if G( Yi' YJ ~ <1>.

,
The main result of this paper is the following theorem.

3.5 

Theorem

If 8( Y ) generates G, and G satisfies condition /, then X is a tree.

Proof

By Lemma 3.4, X is connected.

To show that X contains no circuits, that is, no reduced closed paths, we first show
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that X contains no loops. Suppose that x is a loop in X. Then o( x ) = t( x ). Since
G( Y) = X, x = g( y ) for gE G and YE E( Y) and so g( o( g » = g( t( y », hence
o( y ) = t( y ) contradicting the assumption that Y is a subtree. Hence X contains no

loops.
Let Xl ' ..., xn' n ~ 1 be a close path in X. We need to show that this path is not a

circuit, or equivalently, this path is not reduced. Now o( Xl ) = t( xn ) and t( Xj ) ,=
o( Xj + 1) for 1:5 i:5 n-l, Since G( Y) = X, therefore,xj = gA Yj ), for g,-E G andYjE
E( Y), 1:5 i:5 n. Let Uj = t( Yj ) and Vj = o( Yj) for 1:5 i:5 n. From above we have
gl( VI ) = gn( Un ) and gA U;) = gj +.1 ( Vj + 1 ) for 1:5 i:5 n -1.

0 0 3 3 h -1 [ ]eU h [ ] ell l d -1 [ ]eU'By prO}!OSlUOn 0 we avegn gl = Yn n n Yl an gj gj+l= Yj ,

hj[ Yj+ 1] IIj+ 1 , where hjE Gu~ forl:5 i:5 n-l..N 1 -1 -1 -1-1ow = gl g2 g2 ...gn-l gn-lgn gn gl

= [Yl ]"lh1[Y2]62 [Y2]"2 h2 ...[Yn-J"n-l hn-l[yn]"n hn[Yi ]61

where (l, = e and 8,' = ell for 1 :5 i :5 no
'U' ,, ,

Conjugating the above equation by L Yl

Y ]'11 h [ y ]'12 h... Y ]'1n-1 h ' 1
1 1 2 2 n-1 "

[Yl h1[ Y2 I ;,~ ...I Yn-l ]

5r , ] lweget

.';n-l[Yn]'n hn,where'Yj=8j+a

hn-l[ Yn hn; since Yj ]ej =

SzSn.

,1$;$

-

]

[ 

Yi ]-
n, where ei = eYi .

From condition J.we have

(1) Yi + 1 = Yi' and h,-E G -Yi' 1 :S i:S n-1

or
(2) Yi+l = Yi,andh,-EGYi,1!:Si:S~-1,whereG(Yi'Yi)~<I>.

If (1) holds then we have [ Yi+ 1 ] = [y, .We consider the following cases

Case 1. G( Yi' Yi) = <1>. Therefore we have

1 [ ] a. h [ ]a.+ 1g~gi+l = Yi'iYi+l'

Yi]ai hi[Yi]-ai,sinceYi+l=Yi
[ ] eo+ao k[ ] -eO-ao h k G hh= Yi ' , i Yi I " were iE YiSUC t at

[ ]eO [ ] -eo hi = Yi 'ki Yi '

t», = ki,since[y]ey+ei(Y) = 1,foralIYEE( Y).

,.. c. -! -1 E GYi .That is,

=

=
-

=Yi

Y i

gi( Yi)

gi( Yi) ;sinCeYi + 1

gi(Yi

ThIS ImplIes that g; 1 g! +

g~lgi+l(Yi)

~ gi + I( Yi )

~ gi + I(Yi + 1.)

-gi + 1( Yi ~ 1 )

=

=
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,sinceYi + =Yi] = [ Yi ]= [ Yi +

~ Xj + 1 = Xj

~ the path Xl ,X2' ...xn is not reduced.

Case 2. G( Yj , Yj ) #<1>. Then [ Yj f EGy. and Yj , .
I

Therefore g~l gj+l = [Yj]Uj hj[Yj]Uj,hjEGyj'

So g~ 1 gj + l( Yj ) = [ Yj ]Uj hj[ Yj ]Uj ( Yj )

= [Yj]Uj+ej kj[Yj]uj-ej (Yj)'

wherek,.EGyjsuchthath/= [Yj ]ej kj[ Yj

kj (y j ) if t( Y j ) E V( T)

kj[Yjf (Yj) ift(Yj)jV(T).
Since kj and [Yj Y are in Gyj' therefore kj( Yj ) = kj[ Yj f ( Yj) = Yj

Thusg~l gj+ l( Yj) = Yj

~ gj + l( Yi ) = gi( Yi )

~ gi + l( Yi + 1) '= gi( Yi ),sinceYi + 1 =Yj

~ gi + l( Yi + 1) = g;( Yi )

~ Xi + 1 = XI

~ the path Xl ,Xl' ..', Xn is not reduced.

Finally if (2) holds then we have Yi + 1 = Yi and hence [ Yi + 1

1 [ ii]&i(Yi)

.(0, + ]&i-ei ( Y , ), where k,E G y ,such that
! I I I

] = [ Yi ].

Now gj gj + 1( Yj )

Yi]

Yi ]".

hi=[Yi] ki[Yi]8i-ei (Yi) ,since ai+ei=O

ki[ Yi] (Yi) , since &i

= y forallyeE( Y

Hence g~l gi + l( Yi) =

= k;( Yi) , since y ( y )

such that G( Y, y )~ <I>

= y;, sincekiEGYiandGy= Gy.forallYEE( Y).

Yi
~ gi + l( Yi) = gi( Yi )

~ gi + l( Yi + J = gi( Yi) , since Yi + 1 = Yi

~ x.+ 1 = x.I .
~ the path Xl ,X2' ...,xnisnotreduced.

~i[ Yi

ej kJ

,ej k.[
I I

Y..



105On a Condition for a Graph to be a Tree

This completes the proof of the main theorem.

We remark that if X is a tree then G satisfies condition I of Theorem 3.5, r41,
Corollary 1). In fact Corollary 1 op21 has been proved in case 8( Y ) generates G and
G has the presentation < P( Y) I R( Y) without using the assumption that X is a
tree. This leads us to the following corollary of Theorem 3.5.

3.6 Corollary (The Converse of Bass-Serre Theorem)
If 8( Y ) generates G, and G has the presentation < P( Y) I R( Y) > via the map

Gv -Gv and y -[ y ] for all VE V( T) and all YE E( Y), then X is a tree.

4. Applications

In this section we give examples of groups acting on graphs and satisfying condition
I of the main theorem. Free groups, free products of groups, free products of groups
with amalgamation and HNN groups are examples of groups acting on trees in which
condition I is the reduced form of the elements of these groups. For more details
about the above groups we refer the reader to[4].

4.1 Free Groups
Let G be a group of base A.

Define the graph X as follows

V( X) = G

E( X) = Gx(A UA-1)

For ( g, a ) EE( X) we define ,. C

1(g, a) = (ga, a-)

t( g, a) = ga

and o( g, a) = g

G acts on X as follows:

g( g') = gg' , for all g, g' E G ' ..

g(g',a:) = (gg', a) forallg,g'EGandallaEAUA-1.

It is clear that the stabiliZer of each g' EGis trivial. We take T = { 1 } and Yas
V( Y) = { 1 } U { a I aE A } , and E( Y ) = { ( 1, a ) I aE A } U { ( a, a -1 ) I aE A }. It is
clear that Y is &subtree of X, T k Yand G( Y) = X. Now we n~ed to show that X is
a tree. If u is ayertex of Y then u* = 1 and if aE A then the edge y = ( 1, a ) is in Y,
and, o( y ) = 1, t( y ) = a and [y ] = a. Therefore the set of 8( Y) of Lemma 3.4 is
just the set A U A -1 and the condition I is the reduced form of the elements of G.

Consequently by Theorem 3.5, X is a tree.

4.2 Free Products of Groups
Let G = *;EiG;, G; non-trivial, I I I> 1, be a free product of the groups G;
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Define the graph X as follows:

V( X) = GU{gGilgEG,iEI}

E( X) = (GxI) U ( IxG )

For gE G and iE I we define

( g, i) = (i, g) , ( i, g) = (g, i)

t( g, i) = gGi, t( i, g) = g

and o( g, i) = g, o( i, g) = gGi

We define the action of G on Xby

g( g') = gg' ,forallg,g'eG

g(g' Gi) = gg' Gi,forallg,g'eGandallieI

g(g', i) = (gg', i ), for allg, g' eGandallieI

g( i, g') = (i, gg' ),forallg, g' eGandallieI

Let Tbe defined as follows:

V( T) = {1}U{Gilid}

and E( T) = {( 1,i )liEI}U{i, 1 )liEI}

It is clear that T is a subtree of X, Y = T and G( Y) = X. Therefore if v is a vertex
of Y and y is an edge of Y then v* = v and [ y ] = 1. Also it is clear that the stabilizer
of each edge is trivial, and the stabilizer of each vertex gGi of X is the group Gi .
Therefore the set 8( Y ) of Lemma 3.4 is just the set U iE Pi and the condition I is the
reduced form of the elements of G. Consequently by Theorem 3.5, Xis a tree.

4.3 Free Products of Groups with Amalgamation
Let G = * A Gi, ie I, I I I> 1, A non-trivial, be a free product of the groups Gi with

amalgamated subgroup A.

Define the graph X as follows:

V( X) = {gAlgeG}U{gGilgeGi},

E( X) = { (gA, i ) I ge G} U {i, gA ) I ge G} such that

( gA, i) = (i, gA ), ( i, gA ) = ( gA, i )

o( gA, i) = gA, o( i, gA )= gGi, and

t( gA, i) = gG" t( i, gA) = gA.

We define the action of G on Xby

g( g' A) = gg'A, g( g' Gi) =gg' Gi

g( g' A, i) = (gg' A, i ) and g( i, g' A ) = ( i gg' A
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for all g, g' E G and iE [.

Let T be defined as follows:

V( T) = {A, Gj I iE [} and E( T) = {( A, i), (i, A) I iE [} and Y = T.

It is clear that Tis a subtree ofXand G( Y) = X. Ifyis the edge (A, i) or( i, A ),
then [ y ] = 1.

It is clear that the stabilizer of the edge ( A, i ) is the group A and the stabilizer of
the vertices A and G j are the groups A and G j respectively. Therefore the set 8( Y)
of Lemma 3.4 is just the set UjEIGj and the condition [is the reduced form of the ele-
ments of G. Consequently by Theorem 3.5, X is a tree.

4.4 HNN Groups
Let G = < H, tj I re I H, tj At~ 1 = Bj >, iE [be HNN group of base Hand associated

subgroups Ai and BiofH. .

Define the graph X as follows:

V ( X) = {gH I gE G}

E(X) = {(gBi, tj)lgEG}U{gAj1 t~llgEG}suchthat

-1 ) - ) -1 (gBi,ti) = (gtiAi,ti ' (gAi,ti = (gti Bi' ,.

.-1 -1t( gBi, ti) = gt#, t( gAl, t i ) = gt i H
-1and o( gBi ' ti) = gH, o( gAi ' t i ) = gR.

Let T and Y be defined as follows:

T = {H}, V( V) = {H} U {tiH I if: I}, and E( Y) = {( Bi, ti)
{ ( t~i ' t i-I) I if: I}.

We define the action of G on X as follows:
-1 -1g(g' H) = gg' H, g(g'Bi,ti)=(gg'Bi,ti)andg(g'Ai,ti )=(gg'Ai,ti ),

for all g, g' f: G.

It is clear that the stabilizer of the vertexgH is the group H, and the stabilizer of the
edges ( gBi, ti ) and (gAi ' t~ 1) are the groups Bi and Ai respectively.

Also YisasubtreeofXandG( Y) = X. Ify is the edge ( Bi' ti )theno( y) = H,
t( y ) = tiH, and [ y ] = ti .Therefore the set &( Y ) of Lemma 3.4 is H U {ti I if: I},
and the condition I is the reduced form of the elements of G. Conseq~ently by
Theorem 3.5, X is a tree.

t, )

I 

if: I u
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