{AU: Sci., vol. 7, pp. 97-109 (1415 A.H. /1995 A.D.)

On a Condition for a Graph to be a Tree

RASHEED M.S. MAHMOOD
Department of Mathematics, Bahrain University,
Isa Town, State of Bahrain

ABSTRACT. In this paper we show that if a group G acts on the graph X
under certain generators and relations of G, then X is a tree.

1. Introduction

The presentatlon of groups acting on trees known as Bass-Serre theorem has been
given int"! , corollary 5.2.

The aim of this paper is to prove the converse of Bass-Serre theorem in the sense
that if G is a group acting on a graph X and G has the presentation of corollary 5.2
11 then X is a tree.

We begin by giving some definitions. By a graph X we understand a pair of disjoint
sets V( X ) and E( X ), with V( X ) non-empty, together with a mapping E( X ) —
V(X)xV(X),y—>(o(y), #(y)),andamapping E( X )—> E( X ), y— y satisfy-
ingy=yando(y)=1¢(y),forallye E( X ). The case y = y is possible for some ye
E(X).

A path in a graph X is defined to be either a single vertex ve V( X ) (a trivial path),
or a finite sequence of edges y, , ¥, , ***, ¥,, n = 1suchthat( y,) =0 (y;, ) fori
=12, ,n-1. ,

Apathy,,y,," ynisreducedify, +1 72y, fori=12,--,n-1, A gthph Xis con-
nected, if for every pair of vertices u and v of V( X ) there isapathy,,y,, - ,y,in
Xsuchthato(y, )=uandy,)=v.

A graph X is called a tree if for every pair of vertices of V( X ) there is a unique re-
duced path in X joining them. A subgraph Y of a graph X consists of sets V(Y ) C
V(X)and E(Y ) C E( X )suchthatif ye E( Y ), thenye E(Y ),0(y)and#(y )
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arein V( Y ). We write Y C X. We take any vertex to be a subtree without edges. A
maximal connected subgraph is called a component. It is clear that a graph is con-
nected if and only if it has only one component.

If X, and X, are two graphs then the map f: X, — X iscalled a morphlsm if ftakes
vertlces to vertlces and edges to edges such that

fy) =1y)
Ko(y)) = o(f(y))
and fLd(y)) = (f(y)) for all ye E( X, ) ;

f is called an isomorphism if it is one-to-one and onto, and is called an automorph-
ism if it is an isomorphism and X,=X,.The automorphlsms of Xforma group under
composition of maps, denoted by Aux (X).

We say that a group G acts on a graph X if there is a group homomorphism ¢ : G —
Aut ( X). If xe X is a vertex or an edge, we write g(x ) for (g) (x).If ye E( X), then

g(y) = g(y),g(o(y))=o(g(y)),andg(#(y)) = #(g(y)). Thecase g(y) =y for
some ye E( X ) and ge G may occur. If ye X, (vertex or edge), we define G(y ) ={g(y)

| ge G } and this set is called an orbit. If x, ye X, (vertices or edges) we define G( x,y )
={geG|g(y)=x},and G, = G( x, x ), called the stabilizer of x. For ye E( X ), it
is clear that G is a subgroup of G,, whereue{o(y),t(y)}. Alsoif Yisasubset of
X then we define G(Y )tobe theset G(Y)={g(y )|ge G,yeY}

It is clear that if xe V( X ) and ye E( X ), then G( x,y ) =

For more details about groups acting on graphs we refer the reader tol2 o3,

2. Preliminary Definitions and Notation

Throughout this paper G will be a group acting on the graph X, T a subtree of X
such that T contains exactly one vertex from each G-vertex orbit, and Y a subtree of
X such that Y contains 7, and each edge of Y has at least one end in T, and Y contains
exactly one edge y(say) from éach G-edge orbit such that G('y, y ) = ¢, and exactly
one pair y and y from each G-edge orbit such that G(y, y ) # ¢.

Properties of T and'Y
1) G(Y)=X.
(2) G(V(T)=V(X).
(3) Ifu, ve V( T ) suchthat G(u, v) # ¢, thenu = v.
4) G(y,y)=e¢,forallye E(T).
(5) Ify,,y,,€ E(Y)suchthat G(y,,y,) # ¢ ,theny, = y,ory, =,
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Given this we can now introduce the following notation.

(1) For each ve V( X) let v* be the unlque vertex of T'such G( v, v¥) # ¢. In par-
ticular v* = v if ve V( T) and in general (v* )" = v*. Alsoif G(u, v) # ¢, then v* =
v*foru, ve V(X). Ifve V(T),let <G, | rel G, > stand for any presentation of G,

and G, be the set of generating symbols of this presentation.

(2) For each edge y of E( Y') we have the following

(a) Define [ y ] to be an element of G(#(y ), #( ¥ )), thatis, [y ] («(y )Y =
#(y ), to be chosen as follows.

Ifo(y)eV(T)then (i)[y]= Lifye ECT), (i) [y1(y) =yifG(y, y) # ¢.
Ifo(y)¢V(T)then[y]=[y] 'if G(3, y) = ¢,otherwise [y ] = [¥].
Ifisclearthat[y][y] = lnfG(y,y) <p,otherw1se[y][y] =[y)

-1. ... .. - - . . -r 1 e

(b) Let —y =1y

=[y1(-y).

Itisclear thatf(-y) =t(y)" o(+y)—o(yb and(+y)——(y)
(c) LetSybeawordeo(y)*ofvalue[y][y‘.ItxsclearthatS;—Sy.‘

(d) Let E, be aset of generators of G_,and Gy be asetof wordsin G, y)* mapping
onto E, .

(e) Deﬁne $,: G, - G, byd,(g)= [ylely]l ,geG and define §,, : G
— G; by taking the word which represents the element g of E to the word which rep—

resents the element [ylely]l
(f) LetyG,y = G; stand for the set of relations ywy '= ¥, (w), we Ey .
(3) Let P( Y) stand for the set of generating symbols
(i) G,, forve V(T)
(i) y , forye E(Y)
and R( Y) stand for the set of relations
(i) relG,, forve V(T)
(i) Gy~ =G, forye E(Y)
(iii) y=1,forye E(T)
(iv) yy =S, forye E(Y)
(v) y*= S, , for ye E(Y') such that G(y,y)# .
Note that if G(y, y ) # ¢ then y¢ E( T).
(4) Letd(Y)betheset{G,,[y]:ve V(T) and ye E(Y)}.
2.1 Theorem (Bass-Serre Theorem)

(i) If X is connected, then 8( Y') generates G.
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(ii) If Xis a tree, then G has the presentation < P(Y) | R(Y) > via G - G and
y—[y],forallve V(T)and all ye E(Y).

Proof

See™), Corollary 5.2.

3. The Converse of Bass-Serre Theorem

Let G, X, Y and T be as in section two. In this section we prove the converse of
Theorem 2.1 in the sense that if 3( Y ) generates G, then X is connected, and if G has
the presentation of Theorem 2.1 - (ii), then X is a tree.

3.1 Definition

For each ve V(Y) let X, be an edgeofE(Y)suchthato(X e V( T)andt(X)
=v.Lete, = 0if ve V( T), otherwise e, = 1.

Concerning the edge X, we see that X, exists since Y is a subtree and X, is unique
if vé V( T) and not necessarlly unique if ve V( T).

The following proposition will be fundamental for the main theorem.
3.2 Proposition

Any element g of G(u, v ), where u, ve V(Y ) can be writtenas g = X, 1 gl X, 1
where g € G ..

Proof

Since ge G( u, v ), therefore g(v) = u.
We consider the following cases :
Case 1. uandvarein V(T).

In this case we have u* = v* = vsothat G(u, v) = G,and, X, andX areinE(T).
Since [ X,] =[X,]=1ande, = e, = 0, therefore the proposmon holds.

Case?2. ue V(T)and v¢ V(T).

Inthiscaseu*=v*=u,[Xu]%1,eu=0,andev=1.

" Now ge G(u,v)=>g(v)u
= g[ X, ](v*) =" since[Xv
= g[ X, ]G,
== g[X,1=h, he G
= g = HX,]"

| = g = [X,I*AX,]
G(X,, X, = b then[X,] ' =[X,] Wetakeh =g,
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If G(X,,X,) b, then ,,=TX,land[X,] G, .Hence[X,] =
k{ X, ], where ke G, . We take g, = hk.
Case3. u¢ V(T)andyve V(T).
Inthiscaseu* =v*=v,e,=1,e,=0and[ X, ] = L.
Now ge G(u,v) = g(v) =
= g(v)=[X,](u")
== g(v)—[X ](v),sinceu* =v
= [X,]'g(v)=v
= [X,] geG
= [X,] 'g= go,forgoeG
= g—[X] go[X]V sincee, =1, and[X]
Case 4. u and v are not in V{( T)'
_ This case is similar to cases 2 and 3 above.
This completes the proof.

Since Y is a subtree of X, therefore any edge y of E(Y), o(y) € V( T) can be writ-
tenasy=X,, where ve V(Y). Therefore by defining e,=e,—1, where v =o(y), for
allye E(Y ), the following can be easily proved :

D oe, + e, = 0if y¢ E( T ), whereu=1t(y)

Q@ [yl**" '[y],wh!ereu=t(y)andv=o(y)
@) [y]? % =[y], whereu=1ty)

@ [X,]* = [y]*, whereu=1(y)

G)[X,]* =[y.”.wherev=0(y)

3 3 Proposition

Lety, and y, be two edges of E(Y),u;=t( y)andv,=o(y, )fori=1, 2suchthat
G( u, , v, ) # ¢. Then any element ge G( u, ,v,)can be written as

= [y )“1g,0y,1"?, where g, e Gus .
Proof
The proof easily follows from proposition 3.2 and (5) above.
3.4 Lemma
If G is generated by the set 8( Y ), then X is connected.
Proof , ’
Let C be a component of X such that C contains Y. We need to show that X = C.
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Since Y C C, we have G( Y ) C G( C ). By the definition of Y we have G( Y ) = X.
Therefore G( C ) = X. To show that C = X we need to show that G. = G, where G
= {ge G| g( C) = C}whichis asubgroup of G. Define A( Y ) = {geG| Yﬂg( Y)
# ¢ }. Similarly A( C ) is defined. Therefore A(Y ) CA( C).

Now we show that A( Y ) generates G, i.e. <A( Y ) > = G. Since 8( Y ) generates
G, therefore we need to show that the elements of A( Y ) can be written as a product
of the elements of 5( Y ).

Now ge A(Y)= Y Ng(Y)# o
=> there exists u, ve V(Y )suchthatu=g(v) ...
= ge G(u,v)
= g=[X,]"g[ X, ]V, whereg, € G, . (Proposition 3.2)
= < 3(Y)>=<A(Y)>=G |
= <A(C)>=G
Since < A( C) > = G, therefore G, = G.
Therefore Go( C) = G( C), which impliés that C = X. Hence X is connected.
This completes the proof. | |

To prove the main result of this paper we shall therefore assume the following con-
dition on the elements of G.

Condition I

gLy 181,18 [y.]8,, n=1istheidentity element of G, where
(1) yeE(Y),forl=<i<n '

@ «y)=o0(y,;) forl=i=n-1

B) 8.€Gy,,

“) g,eG,(yi), Jdorl=i<n

thenforsomei, 1<i<n

(@) y;,,=y:and ge G_y
or

(®) ;.1 = y;andge G, 1fG(y,,y) # &.
The main result of this paper is the following theorem.
3.5 Theorem _
If 3( Y ) generates G, and G satisfies condition I, then X is a tree.
Proof
By Lemma 3.4, X is connected.

To show that X contains no circuits, that is, no reduced closed paths, we first show
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that X contains no loops. Suppose that x is a loop in X. Then o( x ) = #( x ). Since
G(Y) =X, x=g(y)forgeGandye E(Y)andsog(o(g))=g(«y)),hence
o( y ) = #( y ) contradicting the assumption that Y is a subtree. Hence X contains no
loops.

Letx,, -, x,, n=1beaclose pathin X. We need to show that this path is not a
circuit, or equivalently, this path is not reduced. Nowo( x, ) = #( x, )and t( x; ) =
o(x;,,)forl=i=n-1.Since G( Y ) = X, therefore,x;= g( y, ),forge Gand ye
E(Y),1=i=n.Letuy,=#y, )andv,= o( y,)for1 =i = n. From above we have
g(v,)=g(u,)andg(u,)=g,,(v;,,)forl=i=n-1

By proeposition 33wehaveg ' g =[y, 1" hly, 1Mand g;'g,,=[y1“
hly; ,,17*1,wherehe Gsforl=i=n-1.

Now 1 =g7" 88 811 8n-18:8x &

a 3 a, a o | 3
= [y Tl Y2 [y, 12 by o [yu_alm-t By oLy, T BLyi I
wherea; = ¢, andd,=¢, forl <i=n. '

Conjugating the above equation by * ]81 we get

C= Ty )y ey T [, TR by, wherey, =8+ o, T<i<n.

= [yl hly,] vn o | Yuor V Au_ilya] by 5 since [y Ji=[y],1=si=<
n, wheree, = e, .

From condition I.we have

(1) yiy1=Yy;,andheG

or

(2 ¥i41 = yirandheG,, 1 <i=n-1,where G(y,y;)#¢.

_yi,ISisn—l

If (1) holds then we have [ y; . ; ] =[ y; ]. We consider the following cases

Case 1. G(y;,y;) = ¢. Therefore we have

a:+ 1

[yi]ui hlyii 1"
[y I ki y; ]_ai: sincey, , ; =Y;

IBAE e k[y,17%%, wherek;e G, such that
h, = [y ]e.i ki[ Yi ]-ei

k,,since[ y 17" ») = 1,forallye E( Y ).

8118,-“

F 354

This imphes thatg; ' g, , ; € G,, . Thatis,

g;lgi+l(yi) = )
= g ..(y) = g(y)
= g, ;z+l) = g Yi)‘;Sinceyi+l=;i

™ g1 Yii1) = &%)
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X;

= the pathx, , x,, **- x, is not reduced.

Case 2. G(y;, y;) #¢. Then [y, I €G, and y,

Therefore g;' g,, =
So g;I 8 +1(¥:)

[y, 1% Al Yi 1, hieG,, .
[y 1% ki y; % ( i)
[y, T8 5 kly, 197 (),
where ke G, suchthath,=[ y; 1kl y]
{ki(y,-) ife(y;)eV(T)
ki [y, T () if 1y, )€V(T).

Since k; and B2 F are in G, therefore k( yi') =kl y; F( y.)=y

Thusg;"' g, (y;) =

Y

= g (¥:)=8(y)

= g 1(Visq )‘=gi( Yi )7Sinceyi+l‘=yi
= 8 i(Yier) = 8(¥)

= X=X

= thepathx,,x,, ---, x,isnot reduced.

Finally if (2) holds then we have y, . ; = y; and hence [y.e:]1=1¥1]

Now g;l g+ )

Hence g;l 8 +1(¥) —

o -5,
Iy, 17 anly, 7 ()
i1 t k[ y; ]8"”" (y;),wherek;e GyiSuch that

h=[y, fi kil ...

k[ y, 1% (y;) ,since o;+¢=0

Aki[ y;1 (y;) , since d,

k(y;) ,since [y (y) . Y
suchthatG(y,y ) # ¢

y;, since k;. G, and G;' =G, for allye E(Y).

Yi

= g . (y) = 8&(¥)
= g, 1(Yis) = gi()’i)" since y; .1 = ¥

= X1 TN

13

=> thepathx, ,x,, " ,x,isnotreduced.

L}
.

Il
x|
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This completes the proof of the main theorem.,

We remark that if X is a tree then G satisfies condition I of Theorem 3.5, ([4],
Corollary 1). In fact Corollary 1 of?! has been proved in case 8( Y ) generates G and
G has the presentation < P( Y ) | R( Y ) without using the assumption that X is a
tree. This leads us to the following corollary of Theorem 3.5.

3.6 Corollary (The Converse of Bass-Serre Theorem)

__f8( Y ) generates G, and G has the presentation < P( Y )IR(Y)>viathe map
G,—»G,andy— [y ]forallve V( T )and all ye E( Y ), then X is a tree.

4. Applications

In this section we give examples of groups acting on graphs and satisfying condition
I of the main theorem. Free groups, free products of groups, free products of groups
with amalgamation and HNN groups are examples of groups acting on trees in which
condition / is the reduced form of the elements of these groups. For more details
about the above groups we refer the reader tol*l.

4.1 Free Groups :
Let G be a group of base A.

Define the graph X as follows
V(X)=G
E(X) = Gx(AUA™")

For ( g, a) €¢E( X ) we define
(ga) = (ga,a™')
Hga) = ga

and o( g, a) = g

G acts on X as follows :

8(g') = gg' ,forallg, g'eG
g(g,a) (gg', a) forallg, g'eGandallaeAUA ™" .

It is clear that the stabilizer of each g’ € G is trivial. We take T = {1} and Y as
V(Y)={1}U{a|laeA},and E(Y)={(1,a)|aeAYU{(a,a ')|ac A} Itis
clear that Y is a subtree of X, T C Y and G( Y ) = X. Now we need to show that X is
atree. If uis avertex of Y then u* = 1 and ifae A thentheedgey = (1,4 )isin Y,
and,o(y)=1,/(y) =aand [y ] = a. Therefore the set of 3( Y ) of Lemma 3.4 is
just the set A U A~ " and the condition I is the reduced form of the elements of G.
Consequently by Theorem 3.5, X is a tree.

4.2 Free Products.of Groups
Let G = *_,G,, G;non-trivial, | I| > 1, be a free product of the groups G,
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Define the graph X as follows :
V(X) = GU{gG,|geG, iel}
E(X) = (GxYU(IxG)

For ge G and ie I we define

(&) =(ig),(ig)="(gi)
(g i) =gG;,Hig) =g
and o( g, i) = g o(i g) = gG;
We define the action of G on X by
g(g') = gg',forallg, g'eG
8(g' G;)
g(g' i)
g(i, g ) = (i, gg ) forallg g'eGandalliel
Let Tbe defin_ed as follows :
V(T) = {1}U{G,|iel}
and E(T) = {(1,i)|iel}U{i1)]|iel}

Itis clear that T'is a subtree of X, Y = Tand G( Y ) = X. Therefore if v is a vertex
of Y and yis an edge of Y then v* = vand [ y | = 1. Alsoitis clear that the stabilizer
of each edge is trivial, and the stabilizer of each vertex gG, of X is the group G, .
Therefore the set 3( Y ) of Lemma 3.4 is just the set U ie ;G; and the condition I is the
reduced form of the elements of G. Consequently by Theorem 3.5, X is a tree.

gg' G, forallg, g’'e Gandalliel

(gg',i),forallg, g’ eGandalliel

4.3 Free Products of Groups with Amalgamation
LetG=",G,,iel,|I|> 1, Anon-trivial, be a free product of the groups G, with
amalgamated subgroup A.

Define the graph X as follows :
V(X) = {gA|geG}U{gG,|ge G},
E(X) = { (g4, i)|geG}U{i gA )|ge G}suchthat
(gA, i) = (i, 84),(i, gA)=(gA, i)
o(gA, i) = gA, o(i, gA )= gG,;, and
We define the action of G on X by
g(g'A) = gg' A, 8(g' G,)=88'G,
g(g A i) = (gg' A i)andg(i g A)=(igg' A
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forallg, g'e Gandiel
Let T be defined as follows :
V(T) = {A, G,liel}and E(T)={(A,i),(i,A)|iel}andY=T.

Itis clear that Tisasubtreeof Xand G( Y ) = X. If yistheedge ( A, i Yor( i, A ),
then[y]=1. '

It is clear that the stabilizer of the edge ( A, i ) is the group A and the stabilizer of
the vertices A and G, are the groups A and G, respectively. Therefore the set 8( Y')
of Lemma 3.4 is just the set U, ,G;and the condition 7 is the reduced form of the ele-
ments of G. Consequently by Theorem 3.5, X is a tree.

4.4 HNN Groups
LetG = <H, t,|re|H,t, At;" = B,>, i Ibe HNN group of base H and associated
subgroups A, and B,of H. '

Define the graph X as follows :
V(X) = {gH|geG}
E(X) {(gB,.,t,.)|geG}U{gA,.,t;]|geG}suchthat

(8B, t) = (g A,6') . (8A, 6 ) = (g B, 1)
N gB;, ) = gtH , H gAi, ;') = g}
and o( gB,, t;) = gH, o( gA,;, t?l) = gH.
Let T and Y be defined as follows :
T = {H} V(V)Y={H}U{tH|iel},and E(Y ) ={( B,
{(tA,, ¢ )|iel}.
We define the action of G on X as follows :
g(g H)=gg' H, g(¢'B,,t,)=(gg B, 1;)andg(g' A,,1; )= (g8’ A, 1),
forallg, g’ e G.

)|iel U

l’l

It is clear that the stabilizer of the vertex gH is the group H, and the stabilizer of the
edges ( gB;, t;)and ( gA,, ) are the groups B; and A, respectively.

Also Yis a subtree of X and G( Y)=X Ifyistheedge( B,, t,)theno(y )=H,
(y)=tH,and[y] =t . Therefore theset3( Y )of Lemma3.4is HU {¢|iel},
and the condition I is the reduced form of the elements of G. Consequently by
Theorem 3.5, X is a tree.
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